HomeNanotechnologyDirect patterning of colloidal quantum dots with adaptable dual-ligand floor

Direct patterning of colloidal quantum dots with adaptable dual-ligand floor


  • Ekimov, A. I., Efros, Al. L. & Onushchenko, A. A. Quantum dimension impact in semiconductor microcrystals. Stable State Commun. 56, 921–924 (1985).

    CAS 

    Google Scholar
     

  • Brus, L. Digital wave capabilities in semiconductor clusters: experiment and concept. J. Phys. Chem. 90, 2555–2560 (1986).

    CAS 

    Google Scholar
     

  • Colvin, V., Schlamp, M. & Alivisatos, A. P. Mild-emitting diodes constituted of cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994).


    Google Scholar
     

  • Mueller, A. H. et al. Multicolor light-emitting diodes primarily based on semiconductor nanocrystals encapsulated in GaN cost injection layers. Nano Lett. 5, 1039–1044 (2005).

    CAS 

    Google Scholar
     

  • Pietryga, J. M. et al. Spectroscopic and gadget elements of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    CAS 

    Google Scholar
     

  • Kwak, J. et al. Brilliant and environment friendly full-color colloidal quantum dot light-emitting diodes utilizing an inverted gadget construction. Nano Lett. 12, 2362–2366 (2012).

    CAS 

    Google Scholar
     

  • Coe, S., Woo, W.-Ok., Bawendi, M. & Bulović, V. Electroluminescence from single monolayers of nanocrystals in molecular natural gadgets. Nature 420, 800–803 (2002).

    CAS 

    Google Scholar
     

  • Steckel, J. S. et al. Quantum dots: the final word down‐conversion materials for LCD shows. J. Soc. Inf. Disp. 23, 294–305 (2015).

    CAS 

    Google Scholar
     

  • Bourzac, Ok. Quantum dots go on show. Nature 493, 283–283 (2013).

    CAS 

    Google Scholar
     

  • Yang, J. et al. Towards full-color electroluminescent quantum dot shows. Nano Lett. 21, 26–33 (2021).

    CAS 

    Google Scholar
     

  • Yang, J. et al. Excessive-resolution patterning of colloidal quantum dots through non-destructive, light-driven ligand crosslinking. Nat. Commun. 11, 2874 (2020).

    CAS 

    Google Scholar
     

  • Meng, T. et al. Ultrahigh-resolution quantum-dot light-emitting diodes. Nat. Photon. 16, 297–303 (2022).

    CAS 

    Google Scholar
     

  • Kim, T.-H. et al. Full-colour quantum dot shows fabricated by switch printing. Nat. Photon. 5, 176–182 (2011).

    CAS 

    Google Scholar
     

  • Zhao, J. et al. Giant-area patterning of full-color quantum dot arrays past 1,000 pixels per inch by selective electrophoretic deposition. Nat. Commun. 12, 4603 (2021).

    CAS 

    Google Scholar
     

  • Triana, M. A., Hsiang, E.-L., Zhang, C., Dong, Y. & Wu, S.-T. Luminescent nanomaterials for energy-efficient show and healthcare. ACS Power Lett. 7, 1001–1020 (2022).

    CAS 

    Google Scholar
     

  • Cakmakci, O. & Rolland, J. Head-worn shows: a assessment. J. Disp. Technol. 2, 199–216 (2006).


    Google Scholar
     

  • Jang, H. J., Lee, J. Y., Baek, G. W., Kwak, J. & Park, J.-H. Progress within the improvement of the show efficiency of AR, VR, QLED and OLED gadgets lately. J. Inf. Disp. 23, 1–17 (2022).


    Google Scholar
     

  • Nam, T. W. et al. Thermodynamic-driven polychromatic quantum dot patterning for light-emitting diodes past eye-limiting decision. Nat. Commun. 11, 3040 (2020).

    CAS 

    Google Scholar
     

  • Choi, M. Ok. et al. Wearable pink–inexperienced–blue quantum dot light-emitting diode array utilizing high-resolution intaglio switch printing. Nat. Commun. 6, 7149 (2015).

    CAS 

    Google Scholar
     

  • Keum, H. et al. Photoresist contact patterning of quantum dot movies. ACS Nano 12, 10024–10031 (2018).

    CAS 

    Google Scholar
     

  • Hahm, D. et al. Floor engineered colloidal quantum dots for full inexperienced course of. ACS Appl. Mater. Interfaces 12, 10563–10570 (2020).

    CAS 

    Google Scholar
     

  • Azzellino, G., Freyria, F. S., Nasilowski, M., Bawendi, M. G. & Bulović, V. Micron-scale patterning of excessive quantum yield quantum dot leds. Adv. Mater. Technol. 4, 1800727 (2019).

    CAS 

    Google Scholar
     

  • Wooden, V. et al. Inkjet‐printed quantum dot–polymer composites for full‐coloration a.c.‐pushed shows. Adv. Mater. 21, 2151–2155 (2009).

    CAS 

    Google Scholar
     

  • Yang, P., Zhang, L., Kang, D. J., Strahl, R. & Kraus, T. Excessive‐decision inkjet printing of quantum dot mild‐emitting microdiode arrays. Adv. Optical Mater. 8, 1901429 (2020).

    CAS 

    Google Scholar
     

  • Roh, H. et al. Enhanced efficiency of pixelated quantum dot mild‐emitting diodes by inkjet printing of quantum dot–polymer composites. Adv. Optical Mater. 9, 2002129 (2021).

    CAS 

    Google Scholar
     

  • Chen, M. et al. Excessive efficiency inkjet-printed QLEDs with 18.3% EQE: bettering interfacial contact by novel halogen-free binary solvent system. Nano Res. 14, 4125–4131 (2021).

    CAS 

    Google Scholar
     

  • Tekin, E., Smith, P. J. & Schubert, U. S. Inkjet printing as a deposition and patterning software for polymers and inorganic particles. Gentle Matter 4, 703–713 (2008).

    CAS 

    Google Scholar
     

  • Ahn, J. et al. Ink-lithography for property engineering and patterning of nanocrystal skinny movies. ACS Nano 15, 15667–15675 (2021).

    CAS 

    Google Scholar
     

  • Kim, G.-H. et al. Excessive-resolution colloidal quantum dot movie photolithography through atomic layer deposition of ZnO. ACS Appl. Mater. Interfaces 13, 43075–43084 (2021).

    CAS 

    Google Scholar
     

  • Mei, W. et al. Excessive-resolution, full-color quantum dot light-emitting diode show fabricated through photolithography method. Nano Res. 13, 2485–2491 (2020).

    CAS 

    Google Scholar
     

  • Park, J.-S. et al. Different patterning course of for realization of large-area, full-color, lively quantum dot show. Nano Lett. 16, 6946–6953 (2016).

    CAS 

    Google Scholar
     

  • Wang, Y., Fedin, I., Zhang, H. & Talapin, D. V. Direct optical lithography of practical inorganic nanomaterials. Science 357, 385–388 (2017).

    CAS 

    Google Scholar
     

  • Wang, Y., Pan, J.-A., Wu, H. & Talapin, D. V. Direct wavelength-selective optical and electron-beam lithography of practical inorganic nanomaterials. ACS Nano 13, 13917–13931 (2019).

    CAS 

    Google Scholar
     

  • Cho, H. et al. Direct optical patterning of quantum dot mild‐emitting diodes through in situ ligand trade. Adv. Mater. 32, 2003805 (2020).

  • Ahn, S., Chen, W. & Vazquez-Mena, O. Excessive decision patterning of PbS quantum dots/graphene photodetectors with excessive responsivity through photolithography with a prime graphene layer to guard floor ligands. Nanoscale Adv. 3, 6206–6212 (2021).

    CAS 

    Google Scholar
     

  • Pan, J.-A., Ondry, J. C. & Talapin, D. V. Direct optical lithography of CsPbX3 nanocrystals through photoinduced ligand cleavage with postpatterning chemical modification and digital coupling. Nano Lett. 21, 7609–7616 (2021).

    CAS 

    Google Scholar
     

  • Mattoussi, H. et al. Self-assembly of CdSe−ZnS quantum dot bioconjugates utilizing an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000).

    CAS 

    Google Scholar
     

  • Jeong, B. G. et al. Colourful opaque photovoltaic modules with down-converting InP/ZnSexS1–x quantum dot layers. Nano Power 77, 105169 (2020).

    CAS 

    Google Scholar
     

  • Sanai, Y., Kagami, S. & Kubota, Ok. Cross-linking photopolymerization of monoacrylate initiated by benzophenone. J. Polym. Sci. Half A: Polym. Chem. 56, 1545–1553 (2018).

    CAS 

    Google Scholar
     

  • Virkar, A., Ling, M.-M., Locklin, J. & Bao, Z. Oligothiophene primarily based natural semiconductors with cross-linkable benzophenone moieties. Synth. Met. 158, 958–963 (2008).

    CAS 

    Google Scholar
     

  • Qu, B., Xu, Y., Ding, L. & Rånby, B. A brand new mechanism of benzophenone photoreduction in photoinitiated crosslinking of polyethylene and its mannequin compounds. J. Polym. Sci. Half A: Polym. Chem. 38, 999–1005 (2000).

    CAS 

    Google Scholar
     

  • Boscá, F. & Miranda, M. A. New tendencies in photobiology (invited assessment) photosensitizing medication containing the benzophenone chromophore. J. Photochem. Photobiol. B 43, 1–26 (1998).


    Google Scholar
     

  • Dorman, G., Nakamura, H., Pulsipher, A. & Prestwich, G. D. The lifetime of pi star: exploring the thrilling and forbidden worlds of the benzophenone photophore. Chem. Rev. 116, 15284–15398 (2016).

    CAS 

    Google Scholar
     

  • Ko, J. et al. Direct photolithographic patterning of colloidal quantum dots enabled by UV-crosslinkable and hole-transporting polymer ligands. ACS Appl. Mater. Interfaces 12, 42153–42160 (2020).


    Google Scholar
     

  • Han, J. et al. Towards high-resolution, inkjet-printed, quantum dot light-emitting diodes for next-generation shows. J. Soc. Inf. Disp. 24, 545–551 (2016).

    CAS 

    Google Scholar
     

  • Kim, B. H. et al. Excessive-resolution patterns of quantum dots shaped by electrohydrodynamic jet printing for light-emitting diodes. Nano Lett. 15, 969–973 (2015).

    CAS 

    Google Scholar
     

  • Nallan, H. C., Sadie, J. A., Kitsomboonloha, R., Volkman, S. Ok. & Subramanian, V. Systematic design of jettable nanoparticle-based inkjet inks: rheology, acoustics, and jettability. Langmuir 30, 13470–13477 (2014).

    CAS 

    Google Scholar
     

  • Chung, S., Cho, Ok. & Lee, T. Current progress in inkjet‐printed skinny‐movie transistors. Adv. Sci. 6, 1801445 (2019).


    Google Scholar
     

  • Hahm, D. et al. Design precept for brilliant, strong, and color-pure InP/ZnSexS1–x/ZnS heterostructures. Chem. Mater. 31, 3476–3484 (2019).

    CAS 

    Google Scholar
     

  • Jeong, B. G. et al. Interface polarization in heterovalent core–shell nanocrystals. Nat. Mater. 21, 246–252 (2022).

    CAS 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments