HomeNanotechnologyImmunotherapy for kind 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded uneven...

Immunotherapy for kind 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded uneven microneedle patch (STAMP) | Journal of Nanobiotechnology


  • Zhao X, Birchall JC, Coulman SA, Tatovic D, Singh RK, Wen L, Wong FS, Dayan CM, Hanna SJ. Microneedle supply of autoantigen for immunotherapy in kind 1 diabetes. J Management Launch. 2016; 223:178–187.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Vojislav C, Natasa R, Milica P, Slobodan A, Radivoj Ok, Danijela R, Sasa R. Incidence development of kind 1 diabetes mellitus in Serbia. BMC Endocr Disord. 2020; 20(1):34.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roglic G. WHO world report on diabetes: a abstract. Int J Noncommun Dis. 2016; 1(1):3.

    Article 

    Google Scholar
     

  • Desai S, Deshmukh A. Mapping of kind 1 diabetes mellitus. Curr Diabetes Rev. 2020; 16(5):438–441.

    PubMed 
    Article 

    Google Scholar
     

  • Bluestone JA, Herold Ok, Eisenbarth G. Genetics, pathogenesis and medical interventions in kind 1 diabetes. Nature. 2010; 464(7293):1293–1300.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Roep BO. The function of T-cells within the pathogenesis of kind 1 diabetes: from trigger to remedy. Diabetologia. 2003; 46(3):305–321.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bach J-F, Chatenoud L. The hygiene speculation: an evidence for the elevated frequency of insulin-dependent diabetes. Chilly Spring Harb Perspect Med. 2012; 2(2):a007799.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Roep BO, Thomaidou S, van Tienhoven R, Zaldumbide A. Kind 1 diabetes mellitus as a illness of the β-cell (don’t blame the immune system?). Nat Rev Endocrinol. 2021; 17(3):150–161.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kobos E, Imiela J. Elements affecting the extent of burden of caregivers of kids with kind 1 diabetes. Appl Nurs Res. 2015; 28(2):142–149.

    PubMed 
    Article 

    Google Scholar
     

  • Commissariat PV, Harrington KR, Whitehouse AL, Miller KM, Hilliard ME, Van Identify M, DeSalvo DJ, Tamborlane WV, Anderson BJ, DiMeglio LA, Laffel LM. “I’m basically his pancreas”: father or mother perceptions of diabetes burden and alternatives to scale back burden within the care of kids < 8 years outdated with kind 1 diabetes. Pediatr Diabetes. 2020;21(2):377–83.

    PubMed 
    Article 

    Google Scholar
     

  • Al-Mutairi HF, Mohsen AM, Al-Mazidi ZM. Genetics of kind I diabetes. Kuwait Med J. 2007; 39:107–115.


    Google Scholar
     

  • Acharjee S, Ghosh B, Al-Dhubiab BE, Nair AB. Understanding kind 1 diabetes: etiology and fashions. Can J Diabetes. 2013; 37(4):269–276.

    PubMed 
    Article 

    Google Scholar
     

  • van Belle TL, Coppieters KT, von Herrath MG. Kind 1 diabetes: etiology, immunology, and therapeutic methods. Physiol Rev. 2011;91(1):79–118.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Tosur M, Redondo MJ, Lyons SK. Adjuvant pharmacotherapies to insulin for the remedy of kind 1 diabetes. Curr Diab Rep. 2018; 18(10):79.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Waldron-Lynch F, Herold KC. Immunomodulatory remedy to protect pancreatic β-cell perform in kind 1 diabetes. Nat Rev Drug Discov. 2011; 10(6):439–452.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tarbell KV, Petit L, Zuo X, Toy P, Luo X, Mqadmi A, Yang H, Suthanthiran M, Mojsov S, Steinman RM. Dendritic cell-expanded, islet-specific CD4 + CD25 + CD62L + regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med. 2007; 204(1):191–201.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Tai N, Yasuda H, Xiang Y, Zhang L, Rodriguez-Pinto D, Yokono Ok, Sherwin R, Wong FS, Nagata M, Wen L. IL-10-conditioned dendritic cells stop autoimmune diabetes in NOD and humanized HLA-DQ8/RIP-B7.1 mice. Clin Immunol. 2011; 139(3):336–349.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Ziegler A-G, Bonifacio E. Shortening the paths to kind 1 diabetes mellitus prevention. Nat Rev Endocrinol. 2021; 17(2):73–74.

    PubMed 
    Article 

    Google Scholar
     

  • Rosenzwajg M, Salet R, Lorenzon R, Tchitchek N, Roux A, Bernard C, Carel J-C, Storey C, Polak M, Beltrand J, et al. Low-dose IL-2 in kids with lately identified kind 1 diabetes: a Section I/II randomised, double-blind, placebo-controlled, dose-finding examine. Diabetologia. 2020; 63(9):1808–1821.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Nepom GT, Ehlers M, Mandrup-Poulsen T. Anti-cytokine therapies in T1D: Ideas and methods. Clin Immunol. 2013; 149(3):279–285.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Pihl M, Barcenilla H, Axelsson S, Chéramy M, Åkerman L, Johansson I, Ludvigsson J, Casas R. GAD-specific T cells are induced by GAD-alum remedy in Kind-1 diabetes sufferers. Clin Immunol. 2017; 176:114–121.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Roep BO, Wheeler DCS, Peakman M. Antigen-based immune modulation remedy for kind 1 diabetes: the period of precision medication. Lancet Diabetes Endocrinol. 2019; 7(1):65–74.

    PubMed 
    Article 

    Google Scholar
     

  • Atkinson MA, Roep BO, Posgai A, Wheeler DCS, Peakman M. The problem of modulating β-cell autoimmunity in kind 1 diabetes. Lancet Diabetes Endocrinol. 2019; 7(1):52–64.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites, and the hygiene speculation. Science. 2002; 296(5567):490–494.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bach J-F. The hygiene speculation in autoimmunity: the function of pathogens and commensals. Nat Rev Immunol. 2018; 18(2):105–120.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Saunders KA, Raine T, Cooke A, Lawrence CE. Inhibition of autoimmune kind 1 diabetes by gastrointestinal helminth an infection. Infect Immun. 2007; 75(1):397–407.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Lund ME, O’Brien BA, Hutchinson AT, Robinson MW, Simpson AM, Dalton JP, Donnelly S. Secreted proteins from the helminth Fasciola hepatica inhibit the initiation of autoreactive T cell responses and forestall diabetes within the NOD mouse. PLoS One. 2014; 9(1):e86289.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Berbudi A, Ajendra J, Wardani APF, Hoerauf A, Hübner MP. Parasitic helminths and their helpful impression on kind 1 and sort 2 diabetes. Diabetes Metab Res Rev. 2016; 32(3):238–250.

    PubMed 
    Article 

    Google Scholar
     

  • Espinoza-Jiménez A, De Haro R, Terrazas LI. Antigens management experimental kind 1 diabetes by inducing alternatively activated macrophages. Mediators Inflamm. 2017;2017:8074329.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tang C-L, Zou J-N, Zhang R-H, Liu Z-M, Mao C-L. Helminths shield towards kind 1 diabetes: results and mechanisms. Parasitol Res. 2019; 118(4):1087–1094.

    PubMed 
    Article 

    Google Scholar
     

  • Araújo MI, Hoppe BS, Medeiros M, Carvalho EM. Schistosoma mansoni an infection modulates the immune response towards allergic and auto-immune ailments. Mem Inst Oswaldo Cruz. 2004;99(5 Suppl 1):27–32.

    PubMed 
    Article 

    Google Scholar
     

  • Osada Y, Kanazawa T. Parasitic helminths: new weapons towards immunological issues. J Biomed Biotechnol. 2010;2010743758.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kriegel MA, Sefik E, Hill JA, Wu H-J, Benoist C, Mathis D. Naturally transmitted segmented filamentous micro organism segregate with diabetes safety in nonobese diabetic mice. Proc Natl Acad Sci U S A. 2011; 108(28):11548–11553.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Lau Ok, Benitez P, Ardissone A, Wilson TD, Collins EL, Lorca G, Li N, Sankar D, Wasserfall C, Neu J, et al. Inhibition of kind 1 diabetes correlated to a Lactobacillus johnsonii N6.2-mediated Th17 bias. J Immunol. 2011; 186(6):3538–3546.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Yan Ok, Wang B, Zhou H, Luo Q, Shen J, Xu Y, Zhong Z. Amelioration of kind 1 diabetes by recombinant fructose-1,6-bisphosphate aldolase and cystatin derived from Schistosoma japonicum in a murine mannequin. Parasitol Res. 2020;119(1):203–14.

    PubMed 
    Article 

    Google Scholar
     

  • Hung J-T, Liao J-H, Lin Y-C, Chang H-Y, Wu S-F, Chang T-H, Kung JT, Hsieh S-L, McDevitt H, Sytwu H-Ok. Immunopathogenic function of TH1 cells in autoimmune diabetes: proof from a T1 and T2 doubly transgenic non-obese diabetic mouse mannequin. J Autoimmun. 2005; 25(3):181–192.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaccone P, Burton OT, Gibbs S, Miller N, Jones FM, Dunne DW, Cooke A. Immune modulation by Schistosoma mansoni antigens in NOD mice: results on each innate and adaptive immune methods. J Biomed Biotechnol. 2010;2010:795210.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Duan Q, Xiong L, Liao C, Liu Z, Xiao Y, Huang R, Tan T, Ouyang Y, Cai J, Xiao M, et al. Inhabitants based mostly and animal examine on the results of Schistosoma japonicum an infection within the regulation of host glucose homeostasis. Acta Trop. 2018; 180:33–41.

    PubMed 
    Article 

    Google Scholar
     

  • Chen W, Wainer J, Ryoo SW, Qi X, Chang R, Li J, Lee SH, Min S, Wentworth A, Collins JE, et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug supply. Sci Adv. 2022; 8(1):eabk1792.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen W, Wang Z, Wang L, Chen X. Good chemical engineering-based light-weight and miniaturized attachable methods for superior drug supply and diagnostics. Adv Mater. 2022; 34(6):e2106701.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Chen W, Cai B, Geng Z, Chen F, Wang Z, Wang L, Chen X. Lowering false negatives in COVID-19 testing through the use of microneedle-based oropharyngeal swabs. Matter. 2020; 3(5):1589–1600.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays built-in with residing organisms for sensible biomedical purposes. Theranostics. 2021; 11(20):10012–10029.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Chen W, Tian R, Xu C, Yung BC, Wang G, Liu Y, Ni Q, Zhang F, Zhou Z, Wang J, et al. Microneedle-array patches loaded with twin mineralized protein/peptide particles for kind 2 diabetes remedy. Nat Commun. 2017; 8(1):1777.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kim Y-C, Park J-H, Prausnitz MR. Microneedles for drug and vaccine supply. Adv Drug Deliv Rev. 2012; 64(14):1547–1568.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, Morrissey A, Birchall JC. Medical administration of microneedles: pores and skin puncture, ache and sensation. Biomed Microdevices. 2009; 11(1):35–47.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zhang Y, Yu J, Kahkoska AR, Wang J, Buse JB, Gu Z. Advances in transdermal insulin supply. Adv Drug Deliv Rev. 2019; 139:51–70.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang P, Wang Y, Yi Y, Gong Y, Ji H, Gan Y, Xie F, Fan J, Wang X. MXenes-integrated microneedle mixed with asiaticoside to penetrate the cuticle for remedy of diabetic foot ulcer. J Nanobiotechnology. 2022; 20(1):259.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Demuth PC, Garcia-Beltran WF, Ai-Ling ML, Hammond PT, Irvine DJ. Composite dissolving microneedles for coordinated management of antigen and adjuvant supply kinetics in transcutaneous vaccination. Adv Funct Mater. 2013; 23(2):161–172.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Amani H, Shahbazi M-A, D’Amico C, Fontana F, Abbaszadeh S, Santos HA. Microneedles for painless transdermal immunotherapeutic purposes. J Management Launch. 2021; 330:185–217.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Park J, Kim Y-C. Topical supply of 5-fluorouracil-loaded carboxymethyl chitosan nanoparticles utilizing microneedles for keloid remedy. Drug Deliv Transl Res. 2021; 11(1):205–213.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Capanema NSV, Mansur AAP, de Jesus AC, Carvalho SM, de Oliveira LC, Mansur HS. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing purposes. Int J Biol Macromol. 2018; 106:1218–1234.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kim JD, Kim M, Yang H, Lee Ok, Jung H. Droplet-born air blowing: novel dissolving microneedle fabrication. J Management Launch. 2013; 170(3):430–436.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Candido RRF, Favero V, Duke M, Karl S, Gutiérrez L, Woodward RC, Graeff-Teixeira C, Jones MK, St Pierre TG. The affinity of magnetic microspheres for Schistosoma eggs. Int J Parasitol. 2015; 45(1):43–50.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Karl S, Gutiérrez L, Lucyk-Maurer R, Kerr R, Candido RRF, Toh SQ, Saunders M, Shaw JA, Suvorova A, Hofmann A, et al. The iron distribution and magnetic properties of schistosome eggshells: implications for improved diagnostics. PLoS Negl Trop Dis. 2013; 7(5):e2219.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Strachan DP. Hay fever, hygiene, and family dimension. BMJ. 1989; 299(6710):1259–1260.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Weintrob N, Sprecher E, Israel S, Pinhas-Hamiel O, Kwon OJ, Bloch Ok, Abramov N, Arbel A, Josefsberg Z, Brautbar C, Vardi P. Kind 1 diabetes environmental elements and correspondence evaluation of HLA class II genes within the Yemenite Jewish neighborhood in Israel. Diabetes Care. 2001; 24(4):650–653.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Elliott DE, Weinstock JV. Helminth-host immunological interactions: prevention and management of immune-mediated ailments. Ann N Y Acad Sci. 2012; 1247:83–96.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Du L, Tang H, Ma Z, Xu J, Gao W, Chen J, Gan W, Zhang Z, Yu X, Zhou X, Hu X. The protecting impact of the recombinant 53-kDa protein of Trichinella spiralis on experimental colitis in mice. Dig Dis Sci. 2011; 56(10):2810–2817.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Weinstock JV, Elliott DE. Translatability of helminth remedy in inflammatory bowel ailments. Int J Parasitol. 2013; 43(3–4):245–251.

    PubMed 
    Article 

    Google Scholar
     

  • Leonardi I, Gerstgrasser A, Schmidt TSB, Nicholls F, Tewes B, Greinwald R, von Mering C, Rogler G, Frey-Wagner I. Preventive Trichuris suis ova (TSO) remedy protects immunocompetent rabbits from DSS colitis however could also be detrimental below circumstances of immunosuppression. Sci Rep. 2017; 7(1):16500.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kron MA, Metwali A, Vodanovic-Jankovic S, Elliott D. Nematode asparaginyl-tRNA synthetase resolves intestinal irritation in mice with T-cell switch colitis. Clin Vaccine Immunol. 2013; 20(2):276–281.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Navarro S, Pickering DA, Ferreira IB, Jones L, Ryan S, Troy S, Leech A, Hotez PJ, Zhan B, Laha T, et al. Hookworm recombinant protein promotes regulatory T cell responses that suppress experimental bronchial asthma. Sci Transl Med. 2016; 8(362):362ra143.

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Hirahara Ok, Vahedi G, Ghoreschi Ok, Yang X-P, Nakayamada S, Kanno Y, O’Shea JJ, Laurence A. Helper T-cell differentiation and plasticity: insights from epigenetics. Immunology. 2011; 134(3):235–245.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Martínez-Méndez D, Villarreal C, Mendoza L, Huerta L. An integrative community modeling strategy to T CD4 cell activation. Entrance Physiol. 2020; 11:380.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, Hoffmüller U, Baron U, Olek S, Bluestone JA, Brusko TM. Plasticity of human regulatory T cells in wholesome topics and sufferers with kind 1 diabetes. J Immunol. 2011; 186(7):3918–3926.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin Microbiol Rev. 2012; 25(4):585–608.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Fairfax Ok, Nascimento M, Huang SC-C, Everts B, Pearce EJ. Th2 responses in schistosomiasis. Semin Immunopathol. 2012; 34(6):863–871.

    PubMed 
    Article 

    Google Scholar
     

  • Cooke A, Tonks P, Jones FM, O’Shea H, Hutchings P, Fulford AJ, Dunne DW. An infection with Schistosoma mansoni prevents insulin dependent diabetes mellitus in non-obese diabetic mice. Parasite Immunol. 1999;21(4):169–76.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaccone P, Burton O, Miller N, Jones FM, Dunne DW, Cooke A. Schistosoma mansoni egg antigens induce Treg that take part in diabetes prevention in NOD mice. Eur J Immunol. 2009; 39(4):1098–1107.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cleenewerk L, Garssen J, Hogenkamp A. Medical use of antigens as novel immunotherapies for autoimmune issues. Entrance Immunol. 2020; 11:1821.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Zaccone P, Fehérvári Z, Jones FM, Sidobre S, Kronenberg M, Dunne DW, Cooke A. Schistosoma mansoni antigens modulate the exercise of the innate immune response and forestall onset of kind 1 diabetes. Eur J Immunol. 2003; 33(5):1439–1449.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zaccone P, Burton OT, Gibbs SE, Miller N, Jones FM, Schramm G, Haas H, Doenhoff MJ, Dunne DW, Cooke A. The S. mansoni glycoprotein ω-1 induces Foxp3 expression in NOD mouse CD4+ T cells. Eur J Immunol. 2011; 41(9):2709–2718.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Zou J, Liu W, Lei J, Mo H, Wang C, Yu G, Cheng Y, Li Y. Impact of continual an infection with Schistosoma japonicum on a number of low-dose streptozotocin induced diabetes mellitus in mice. J Pathog Biol. 2006;24(1):51–5.


    Google Scholar
     

  • Hams E, Aviello G, Fallon PG. The schistosoma granuloma: pal or foe? Entrance Immunol. 2013; 4:89.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang L, Yu Z, Wan S, Wu F, Chen W, Zhang B, Lin D, Liu J, Xie H, Solar X, Wu Z. Exosomes derived from dendritic cells handled with soluble egg antigen attenuate DSS-induced colitis. Entrance Pharmacol. 2017; 8:651.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Wang S, Xie Y, Yang X, Wang X, Yan Ok, Zhong Z, Wang X, Xu Y, Zhang Y, Liu F, Shen J. Therapeutic potential of recombinant cystatin from Schistosoma japonicum in TNBS-induced experimental colitis of mice. Parasit Vectors. 2016;9:6.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • McCrudden MTC, McAlister E, Courtenay AJ, González-Vázquez P, Singh TRR, Donnelly RF. Microneedle purposes in bettering pores and skin look. Exp Dermatol. 2015; 24(8):561–566.

    PubMed 
    Article 

    Google Scholar
     

  • Richter-Johnson J, Kumar P, Choonara YE, du Toit LC, Pillay V. Therapeutic purposes and pharmacoeconomics of microneedle expertise. Knowledgeable Rev Pharmacoecon Outcomes Res. 2018; 18(4):359–369.

    PubMed 
    Article 

    Google Scholar
     

  • Ohta N, Asahi H, Hosaka Y, Minai M, Ishii A. Regulation of the human T-cell response to Schistosoma japonicum egg antigen by concomitant mobile and humoral mechanisms in vitro. Parasitol Res. 1991;77(1):54–8.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Carson JP, Robinson MW, Hsieh MH, Cody J, Le L, You H, McManus DP, Gobert GN. A comparative proteomics evaluation of the egg secretions of three main schistosome species. Mol Biochem Parasitol. 2020; 240:111322.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • He P, Zou Y, Hu Z. Advances in aluminum hydroxide-based adjuvant analysis and its mechanism. Hum Vaccin Immunother. 2015; 11(2):477–488.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Furman BL. Streptozotocin-induced diabetic fashions in mice and rats. Curr Protocols Pharmacol. 2015;70(1):5–47.

    Article 

    Google Scholar
     

  • Like AA, Rossini AA. Streptozotocin-induced pancreatic insulitis: new mannequin of diabetes mellitus. Science. 1976; 193(4251):415–417.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Kolb-Bachofen V, Epstein S, Kiesel U, Kolb H. Low-dose streptozocin-induced diabetes in mice. Electron microscopy reveals single-cell insulitis earlier than diabetes onset. Diabetes. 1988; 37(1):21–27.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Paik SG, Fleischer N, Shin SI. Insulin-dependent diabetes mellitus induced by subdiabetogenic doses of streptozotocin: compulsory function of cell-mediated autoimmune processes. Proc Natl Acad Sci U S A. 1980; 77(10):6129–6133.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Herold KC, Montag AG, Fitch FW. Therapy with anti-T-lymphocyte antibodies prevents induction of insulitis in mice given a number of doses of streptozocin. Diabetes. 1987; 36(7):796–801.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klinkhammer C, Popowa P, Gleichmann H. Particular immunity to streptozocin. Mobile necessities for induction of lymphoproliferation. Diabetes. 1988; 37(1):74–80.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Klinkhammer C, Dohle C, Gleichmann H. T cell-dependent class II main histocompatibility complicated antigen expression in vivo induced by the diabetogen streptozotocin. Immunobiology. 1989;180:1.

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cockfield SM, Ramassar V, Urmson J, Halloran PF. A number of low dose streptozotocin induces systemic MHC expression in mice by triggering T cells to launch IFN-gamma. J Immunol. 1989; 142(4):1120–1128.

    CAS 
    PubMed 

    Google Scholar
     

  • Lukić ML, Stosić-Grujicić S, Shahin A. Effector mechanisms in low-dose streptozotocin-induced diabetes. Dev Immunol. 1998; 6(1–2):119–128.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, Li H, Chung J, Sohn J, Kim S, et al. Antibiotic-mediated intestine microbiome perturbation accelerates growth of kind 1 diabetes in mice. Nat Microbiol. 2016; 1(11):16140.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • RELATED ARTICLES

    LEAVE A REPLY

    Please enter your comment!
    Please enter your name here

    Most Popular

    Recent Comments