Antimicrobial Resistance Collaborators. World burden of bacterial antimicrobial resistance in 2019: a scientific evaluation. Lancet. 2022;399:629–55.
Mahoney AR, Safaee MM, Wuest WM, Furst AL. The silent pandemic: emergent antibiotic resistances following the worldwide response to SARS-CoV-2. IScience. 2021;24: 102304.
Jani Okay, Srivastava V, Sharma P, Vir A, Sharma A. Quick access to antibiotics; unfold of antimicrobial resistance and implementation of 1 well being strategy in India. J Epidemiol Glob Well being. 2021;11:444–52.
Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative micro organism. Antibiotics. 2019;8:37.
O’Neill J. Evaluation on antimicrobial resistance: tackling drug-resistant infections globally: remaining report and suggestions. Evaluation on antimicrobial resistance: tackling drug-resistant infections globally. 2016.
Peterson E, Kaur P. Antibiotic resistance mechanisms in micro organism: relationships between resistance determinants of antibiotic producers, environmental micro organism, and scientific pathogens. Entrance Microbiol. 2018;9:1–21.
Nicoloff H, Hjort Okay, Levin BR, Andersson DI. The excessive prevalence of antibiotic heteroresistance in pathogenic micro organism is principally brought on by gene amplification. Nat Microbiol. 2019;4:504–14.
Baker KS, Dallman TJ, Area N, Childs T, Mitchell H, Day M, et al. Horizontal antimicrobial resistance switch drives epidemics of a number of Shigella species. Nat Commun. 2018;9:1462.
Worley JN, Javkar Okay, Hoffmann M, Hysell Okay, Garcia-Williams A, Tagg Okay, et al. Genomic drivers of multidrug-resistant shigella affecting weak affected person populations in the USA and overseas. MBio. 2021;12: e03188-20.
Rosas NC, Lithgow T. Concentrating on bacterial outer-membrane remodelling to impression antimicrobial drug resistance. Tendencies Microbiol. 2022;30:544–52.
Kao CY, Chen SS, Hung KH, Wu HM, Hsueh PR, Yan JJ, et al. Overproduction of energetic efflux pump and variations of OprD dominate in imipenem-resistant Pseudomonas aeruginosa remoted from sufferers with bloodstream infections in Taiwan. BMC Microbiol. 2016;16(1):107.
Wang Z, Fan G, Hryc CF, Blaza JN, Serysheva II, Schmid MF, Chiu W, Luisi BF, Du D. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump. Elife. 2017;6: e24905.
Jellen-Ritter AS, Kern WV. Enhanced expression of the multidrug efflux pumps AcrAB and AcrEF related to insertion aspect transposition in Escherichia coli mutants chosen with a fluoroquinolone. Antimicrob Brokers Chemother. 2001;45:1467–72.
Wand ME, Darby EM, Blair JMA, Sutton JM. Contribution of the efflux pump AcrAB-TolC to the tolerance of chlorhexidine and different biocides in Klebsiella spp. J Med Microbiol. 2022;71(3): 001496.
Aminov R. Acquisition and unfold of antimicrobial resistance: a tet(X) case examine. Int J Mol Sci. 2021;22(8):3905.
Huovinen P, Sundström L, Swedberg G, Sköld O. Trimethoprim and sulfonamide resistance. Antimicrob Brokers Chemother. 1995;39:279–89.
Pikis A, Donkersloot JA, Rodriguez WJ, Keith JM. A conservative amino acid mutation within the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneumoniae. J Infect Dis. 1998;178:700–6.
Dale GE, Broger C, D’Arcy A, Hartman PG, DeHoogt R, Jolidon S, et al. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J Mol Biol. 1997;266:23–30.
Redgrave LS, Sutton SB, Webber MA, Piddock LJV. Fluoroquinolone resistance: mechanisms, impression on micro organism, and position in evolutionary success. Tendencies Microbiol. 2014;22:438–45.
Rodríguez-Martínez JM, Cano ME, Velasco C, Martínez-Martínez L, Pascual Á. Plasmid-mediated quinolone resistance: an replace. J Infect Chemother. 2010;17:149–82.
Floss HG, Yu TW. Rifamycin-mode of motion, resistance, and biosynthesis. Chem Rev. 2005;105:621–32.
Diaz R, Ramalheira E, Afreixo V, Gago B. Methicillin-resistant Staphylococcus aureus carrying the brand new mecC gene—a meta-analysis. Diagn Microbiol Infect Dis. 2016;84:135–40.
Hegstad Okay, Mikalsen T, Coque TM, Werner G, Sundsfjord A. Cellular genetic parts and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect. 2010;16:541–54.
Farhadi R, Saffar MJ, Monfared FT, Larijani LV, Kenari SA, Charati JY. Prevalence, danger components and molecular evaluation of vancomycin-resistant Enterococci colonization in a referral neonatal intensive care unit: a potential examine in northern Iran. J Glob Antimicrob Resist. 2022;S2213–7165(22):00122–9.
Roberts MC. Replace on macrolide–lincosamide–streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol Lett. 2008;282:147–59.
Candela T, Marvaud JC, Nguyen TK, Lambert T. A cfr-like gene cfr(C) conferring linezolid resistance is frequent in Clostridium difficile. Int J Antimicrob Brokers. 2017;50:496–500.
Kishk R, Soliman N, Nemr N, Eldesouki R, Mahrous N, Gobouri A, et al. Prevalence of aminoglycoside resistance and aminoglycoside modifying enzymes in Acinetobacter baumannii amongst intensive care unit sufferers, Ismailia, Egypt. Infect Drug Resist. 2021;14:143–50.
Alcala A, Ramirez G, Solis A, Kim Y, Tan Okay, Luna O, et al. Structural and purposeful characterization of three Sort B and C chloramphenicol acetyltransferases from Vibrio species. Protein Sci. 2020;29:695–710.
Morar M, Wright GD. The genomic enzymology of antibiotic resistance. Annu Rev Genet. 2010;44:25–51.
Lopatkin AJ, Bening SC, Manson AL, Stokes JM, Kohanski MA, Badran AH, et al. Clinically related mutations in core metabolic genes confer antibiotic resistance. Science. 2021;371: eaba0862.
Stalder T, Rogers LM, Renfrow C, Yano H, Smith Z, Prime EM. Rising patterns of plasmid-host coevolution that stabilize antibiotic resistance. Sci Rep. 2017;7:1–10.
Westblade LJ, Errington J, Dorr T. Antibiotic tolerance. PLoS Pathog. 2020;16:10.
Liu J, Gefen O, Ronin I, Bar-Meir M, Balaban NQ. Impact of tolerance on the evolution of antibiotic resistance below drug combos. Science. 2020;367:200–4.
Sulaiman JE, Lam H. Evolution of bacterial tolerance below antibiotic remedy and its implications on the event of resistance. Entrance Microbiol. 2021;12: 617412.
Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic remedy. Nat Rev Microbiol. 2016;14:320–30.
Yan J, Bassler BL. Surviving as a group: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe. 2019;26:15–21.
Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, et al. Klebsiella pneumoniae biofilms and their position in illness pathogenesis. Entrance Cell Infect Microbiol. 2022;12: 877995.
Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent type of bacterial life. Nat Rev Microbiol. 2016;14:563–75.
Goel N, Fatima SW, Kumar S, Sinha R, Khare SK. Antimicrobial resistance in biofilms: exploring marine actinobacteria as a possible supply of antibiotics and biofilm inhibitors. Biotechnol Rep (Amst). 2021;30: e00613.
Karygianni L, Ren Z, Koo H, Thurnheer T. Biofilm matrixome: extracellular elements in structured microbial communities. Tendencies Microbiol. 2020;28:668–81.
Coleman SR, Blimkie T, Falsafi R, Hancock REW. Multidrug adaptive resistance of Pseudomonas aeruginosa swarming cells. Antimicrob Brokers Chemother. 2020;64(3):e01999-e2019.
Bhattacharyya S, Walker DM, Harshey RM. Lifeless cells launch a ‘necrosignal’ that prompts antibiotic survival pathways in bacterial swarms. Nat Commun. 2020;11:1–12.
Liu Y, Jia Y, Yang Okay, Wang Z. Heterogeneous methods to remove intracellular bacterial pathogens. Entrance Microbiol. 2020;11:563.
Vanrompay D, Nguyen TLA, Cutler SJ, Butaye P. Antimicrobial resistance in Chlamydiales, Rickettsia, Coxiella, and different intracellular pathogens. Microbiol Spectr. 2018;6(2):485–500.
Zou J, Shankar N. The opportunistic pathogen Enterococcus faecalis resists phagosome acidification and autophagy to advertise intracellular survival in macrophages. Cell Microbiol. 2016;18:831–43.
Cano V, March C, Insua JL, Aguiló N, Llobet E, Moranta D, et al. Klebsiella pneumoniae survives inside macrophages by avoiding supply to lysosomes. Cell Microbiol. 2015;17:1537–60.
Krell T, Matilla MA. Antimicrobial resistance: progress and challenges in antibiotic discovery and anti-infective remedy. Microb Biotechnol. 2022;15:70–8.
Shinu P, Mouslem AKA, Nair AB, Venugopala KN, Attimarad M, Singh VA, et al. Progress report: Antimicrobial drug discovery within the resistance period. Prescription drugs (Basel). 2022;15(4):413.
Boyd NK, Teng C, Frei CR. Temporary overview of approaches and challenges in new antibiotic improvement: a concentrate on drug repurposing. Entrance Cell Infect Microbiol. 2021;11: 684515.
Altarac D, Gutch M, Mueller J, Ronsheim M, Tommasi R, Perros M. Challenges and alternatives within the discovery, improvement, and commercialization of pathogen-targeted antibiotics. Drug Discov As we speak. 2021;26:2084–9.
Plackett B. Why huge pharma has deserted antibiotics. Nature. 2020;586:S50–2.
Lamberte LE, van Schaik W. Antibiotic resistance within the commensal human intestine microbiota. Curr Opin Microbiol. 2022;68: 102150.
Kang M, Yang J, Kim S, Park J, Kim M, Park W. Incidence of antibiotic resistance genes and multidrug-resistant micro organism throughout wastewater remedy processes. Sci Whole Environ. 2022;811: 152331.
Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Name of the wild: antibiotic resistance genes in pure environments. Nat Rev Microbiol. 2010;8:251–9.
Kållberg C, Salvesen Blix H, Laxminarayan R. Challenges in antibiotic R&D calling for a world technique contemplating each short- and long-term options. ACS Infect Dis. 2019;5:1265–8.
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol. 2021;19:23–36.
Ndayishimiye J, Kumeria T, Popat A, Falconer JR, Blaskovich MAT. Nanomaterials: the brand new antimicrobial magic bullet. ACS Infect Dis. 2022;8:693–712.
Sharma S, Kumar Okay, Thakur N, Chauhan S, Chauhan MS. The impact of form and dimension of ZnO nanoparticles on their antimicrobial and photocatalytic actions: a inexperienced strategy. Bull Mater Sci. 2020;43:20.
Prasannakumar JB, Vidya YS, Anantharaju KS, Ramgopal G, Nagabhushana H, Sharma SC, et al. Bio-mediated route for the synthesis of form tunable Y2O3: Tb3+ nanoparticles: photoluminescence and antibacterial properties. Spectrochim Acta A Mol Biomol Spectrosc. 2015;151:131–40.
Wu S, Altenried S, Zogg A, Zuber F, Maniura-Weber Okay, Ren Q. Function of the floor nanoscale roughness of stainless-steel on bacterial adhesion and microcolony formation. ACS Omega. 2018;3:6456–64.
Ferreyra Maillard APV, Espeche JC, Maturana P, Cutro AC, Hollmann A. Zeta potential past supplies science: purposes to bacterial methods and to the event of novel antimicrobials. Biochim Biophys Acta Biomembr. 2021;1863: 183597.
Pan X, Wang Y, Chen Z, Pan D, Cheng Y, Liu Z, et al. Investigation of antibacterial exercise and associated mechanism of a sequence of nano-Mg(OH)2. Appl Mater Interfaces. 2013;5:1137–42.
He W, Kim HK, Wamer WG, Melka D, Callahan JH, Yin JJ. Photogenerated cost carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial exercise. J Am Chem Soc. 2014;136:750–7.
Rajivgandhi GN, Ramachandran G, Alharbi NS, Kadaikunnan S, Khaleed JM, Manokaran N, Li WJ. Substantial impact of Cr doping on the antimicrobial exercise of ZnO nanoparticles ready by ultrasonication course of. Mater Sci Eng, B. 2021;263: 114817.
Saliani M, Jalal R, Goharshadi EK. Results of pH and temperature on antibacterial exercise of Zinc Oxide nanofluid in opposition to Escherichia coli O157: H7 and Staphylococcus aureus, Jundishapur. J Microbiol. 2015;8:1–6.
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine struggle in opposition to antibacterial resistance: an summary of the latest pharmaceutical improvements. Pharmaceutics. 2020;12:142.
Shabatina T, Vernaya O, Shumilkin A, Semenov A, Melnikov M. Nanoparticles of bioactive metals/steel oxides and their nanocomposites with antibacterial medication for biomedical purposes. Supplies (Basel). 2022;15(10):3602.
Chung HJ, Castro CM, Im H, Lee H, Weissleder R. A magneto-DNA nanoparticle system for fast detection and phenotyping of micro organism. Nat Nanotechnol. 2013;8:369–75.
Tripathi N, Goshisht MK. Current advances and mechanistic insights into antibacterial exercise, antibiofilm exercise, and cytotoxicity of silver nanoparticles. ACS Appl Bio Mater. 2022;5:1391–463.
Cheng X, Pei X, Xie W, Chen J, Li Y, Wang J, Gao H, Wan Q. pH-triggered size-tunable silver nanoparticles: focused aggregation for efficient bacterial an infection remedy. Small. 2022;18(22): e2200915.
Okkeh M, Bloise N, Restivo E, De Vita L, Pallavicini P, Visai L. Gold nanoparticles: can they be the subsequent magic bullet for multidrug-resistant micro organism? Nanomaterials (Basel). 2021;11(2):312.
Zheng Y, Jiang H, Wang X. Side-dependent antibacterial exercise of Au nanocrystals. Chin Chem Lett. 2020;31:3183–9.
Rajendiran Okay, Zhao Z, Pei DS, Fu A. Antimicrobial exercise and mechanism of functionalized quantum dots. Polymers (Basel). 2019;11(10):1670.
Leevy WM, Lambert TN, Johnson JR, Morris J, Smith BD. Quantum dot probes for micro organism distinguish Escherichia coli mutants and allow in vivo imaging. Chem Commun (Camb). 2008;20:2331–3.
Courtney CM, Goodman SM, McDaniel JA, Madinger NE, Chatterjee A, Nagpal P. Photoexcited quantum dots for killing multidrug-resistant micro organism. Nat Mater. 2016;15:529–34.
Pati R, Sahu R, Panda J, Sonawane A. Encapsulation of zinc-rifampicin advanced into transferrin-conjugated silver quantum-dots improves its antimycobacterial exercise and stability and facilitates drug supply into macrophages. Sci Rep. 2016;6:1–14.
Usman MS, El Zowalaty ME, Shameli Okay, Zainuddin N, Salama M, Ibrahim NA. Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed. 2013;8:4467.
Kulshrestha S, Khan S, Hasan S, Khan ME, Misba L, Khan AU. Calcium fluoride nanoparticles induced suppression of Streptococcus mutans biofilm: an in vitro and in vivo strategy. Appl Microbiol Biotechnol. 2016;100:1901–14.
Fang F, Li M, Zhang J, Lee CS. Completely different methods for natural nanoparticle preparation in biomedicine. ACS Mater Lett. 2020;5:531–49.
Wang Y. Liposome as a supply system for the remedy of biofilm-mediated infections. J Appl Microbiol. 2021;131:2626–39.
Cano A, Ettcheto M, Espina M, López-Machado A, Cajal Y, Rabanal F, et al. State-of-the-art polymeric nanoparticles as promising therapeutic instruments in opposition to human bacterial infections. J Nanobiotechnol. 2020;18(1):156.
Forier Okay, Raemdonck Okay, De Smedt SC, Demeester J, Coenye T, Braeckmans Okay. Lipid and polymer nanoparticles for drug supply to bacterial biofilms. J Management Launch. 2014;190:607–23.
Alqahtani F, Aleanizy F, El Tahir E, Alhabib H, Alsaif R, Shazly G, et al. Antibacterial exercise of chitosan nanoparticles in opposition to pathogenic N. gonorrhoea. Int J Nanomed. 2020;15:7877–87.
Smiechowicz E, Niekraszewicz B, Kulpinski P, Dzitko Okay. Antibacterial composite cellulose fibers modified with silver nanoparticles and nanosilica. Cellulose. 2018;25:3499–517.
Yu Y, Mei L, Shi Y, Zhang X, Cheng Okay, Cao F, et al. Ag-Conjugated graphene quantum dots with blue light-enhanced singlet oxygen era for ternary-mode highly-efficient antimicrobial remedy. J Mater Chem B. 2020;8:1371–82.
Wang Y, Solar H. Polymeric nanomaterials for environment friendly supply of antimicrobial brokers. Pharmaceutics. 2021;13(12):2108.
Arana L, Gallego L, Alkorta I. Incorporation of antibiotics into strong lipid nanoparticles: a promising strategy to cut back antibiotic resistance emergence. Nanomaterials (Basel). 2021;11(5):1251.
Korschelt Okay, Tahir MN, Tremel W. A step into the long run: purposes of nanoparticle enzyme mimics. Chem Eur J. 2018;24:9703–13.
Cao F, Zhang L, Wang H, You Y, Wang Y, Gao N, et al. Defect-rich adhesive nanozymes as environment friendly antibiotics for enhanced bacterial inhibition. Angew Chem Int Ed. 2019;58:16236–42.
Meng Y, Li W, Pan X, Gadd GM. Purposes of nanozymes within the atmosphere. Environ Sci Nano. 2020;7:1305–18.
Gao F, Shao T, Yu Y, Xiong Y, Yang L. Floor-bound reactive oxygen species producing nanozymes for selective antibacterial motion. Nat Commun. 2021;12:1–18.
Santander SA, Vargas AP, Freitas SC, García C. A novel strategy to create an antibacterial floor utilizing titanium dioxide and a mix of dip-pen nanolithography and comfortable lithography. Sci Rep. 2018;8:1–10.
Agnihotri S, Mukherji S, Mukherji S. Immobilized silver nanoparticles improve contact killing and present highest efficacy: elucidation of the mechanism of bactericidal motion of silver. Nanoscale. 2013;5:7328–40.
Baptista PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, et al. Nano-strategies to struggle multidrugresistant micro organism—“A battle of the titans.” Entrance Microbiol. 2018;9:1441.
Gupta A, Mumtaz S, Li CH, Hussain I, Rotello VM. Combatting antibiotic-resistant micro organism utilizing nanomaterials. Chem Soc Rev. 2019;48:415–27.
Huo S, Jiang Y, Gupta A, Jiang Z, Landis RF, Hou S, et al. Absolutely Zwitterionic nanoparticle antimicrobial brokers by way of tuning of core dimension and ligand construction. ACS Nano. 2016;10:8732–7.
Lu X, Feng X, Werber JR, Chu C, Zucker I, Kim JH, et al. Enhanced antibacterial exercise by way of the managed alignment of graphene oxide nanosheets. Proc Natl Acad Sci USA. 2017;114:E9793–801.
Johnston HJ, Hutchison G, Christensen FM, Peters S, Hankin S, Stone V. A assessment of the in vivo and in vitro toxicity of silver and gold particulates: particle attributes and organic mechanisms chargeable for the noticed toxicity. Crit Rev Toxicol. 2010;40:328–46.
Lyon DY, Fortner JD, Sayes CM, Colvin VL, Hughes JB. Bacterial cell affiliation and antimicrobial exercise of a C60 water suspension. Environ Toxicol Chem. 2005;24:2757–62.
Hamal DB, Haggstrom JA, Marchin GL, Ikenberry MA, Hohn Okay, Klabunde KJ. A multifunctional biocide/sporocide and photocatalyst primarily based on titanium dioxide (TiO2) codoped with silver, carbon, and sulfur. Langmuir. 2010;26:2805–10.
Choi JY, Kim KH, Choy KC, Oh KT, Kim KN. Photocatalytic antibacterial impact of TiO(2) movie shaped on Ti and TiAg uncovered to Lactobacillus acidophilus. J Biomed Mater Res B Appl Biomater. 2007;80:353–9.
Mohamed MM, Fouad SA, Elshoky HA, Mohammed GM, Salaheldin TA. Antibacterial impact of gold nanoparticles in opposition to Corynebacterium pseudotuberculosis. Int J Vet Sci Med. 2017;5:23–9.
Chen WJ, Tsai PJ, Chen YC. Practical Fe3O4/TiO2 core/shell magnetic nanoparticles as photokilling brokers for pathogenic micro organism. Small. 2008;4:485–91.
Xie Y, He Y, Irwin PL, Jin T, Shi X. Antibacterial exercise and mechanism of motion of zinc oxide nanoparticles in opposition to Campylobacter jejuni. Appl Environ Microbiol. 2011;77:2325–31.
Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, et al. Antimicrobial nanomaterials for water disinfection and microbial management: potential purposes and implications. Water Res. 2008;42:4591–602.
Xin Q, Shah H, Nawaz A, Xie W, Akram MZ, Batool A, et al. Antibacterial carbon-based nanomaterials. Adv Mater. 2019;31: e1804838.
Hsieh HS, Wu R, Jafvert CT. Mild-independent reactive oxygen species (ROS) formation by way of electron switch from carboxylated single-walled carbon nanotubes in water. Environ Sci Technol. 2014;48:11330–6.
Zhao Y, Ye C, Liu W, Chen R, Jiang X. Tuning the composition of AuPt bimetallic nanoparticles for antibacterial utility. Angew Chem Int Ed Engl. 2014;53:8127–31.
Xu JW, Yao Okay, Xu ZK. Nanomaterials with a photothermal impact for antibacterial actions: an summary. Nanoscale. 2019;11:8680–91.
Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A, Plaza JL, et al. Nanoparticles for photothermal therapies. Nanoscale. 2014;6:9494–530.
Ma Okay, Li Y, Wang Z, Chen Y, Zhang X, Chen C, et al. Core-shell Gold Nanorod@Layered double hydroxide nanomaterial with extremely environment friendly photothermal conversion and its utility in antibacterial and tumor remedy. ACS Appl Mater Interfaces. 2019;11:29630–40.
Wang X, Su Okay, Tan L, Liu X, Cui Z, Jing D, et al. Speedy and extremely efficient noninvasive disinfection by hybrid Ag/CS@MnO2 nanosheets utilizing near-infrared mild. Appl Mater Interfaces. 2019;11:15014–27.
Zhang W, Shi S, Wang Y, Yu S, Zhu W, Zhang X, et al. Versatile molybdenum disulfide primarily based antibacterial composites for in vitro enhanced sterilization and in vivo focal an infection remedy. Nanoscale. 2016;8:11642–8.
Ansari SA, Nisar A, Fatma B, Khan W, Chaman M, Azam A, et al. Temperature dependence anomalous dielectric rest in Co doped ZnO nanoparticles. Mater Res Bull. 2012;47:4161–8.
Yu J, Zhang W, Li Y, Wang G, Yang L, Jin J, et al. Synthesis, characterization, antimicrobial exercise and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed Mater. 2014;10: 015001.
Singh R, Cheng S, Singh S. Oxidative stress-mediated genotoxic impact of zinc oxide nanoparticles on Deinococcus radiodurans. 3 Biotech. 2020;10:66.
Depan D, Misra RDK. On the figuring out position of community construction titania in silicone in opposition to bacterial colonization: mechanism and disruption of biofilm. Mater Sci Eng C. 2014;34:221–8.
Tavares A, Carvalho CM, Faustino MA, Neves MG, Tomé JP, Tomé AC, et al. Antimicrobial photodynamic remedy: examine of bacterial restoration viability and potential improvement of resistance after remedy. Mar Medicine. 2010;8:91–105.
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic remedy. Biochem J. 2016;473:347–64.
Chilakamarthi U, Giribabu L. Photodynamic remedy: previous, current and future. Chem Rec. 2017;17:775–802.
Fan W, Huang P, Chen X. Overcoming the Achilles’ heel of photodynamic remedy. Chem Soc Rev. 2016;45:6488–519.
Biel MA. Photodynamic remedy of bacterial and fungal biofilm infections. Strategies Mol Biol. 2010;635:175–94.
Lin JF, Li J, Gopal A, Munshi T, Chu YW, Wang JX, et al. Synthesis of photo-excited Chlorin e6 conjugated silica nanoparticles for enhanced anti-bacterial effectivity to beat methicillin-resistant Staphylococcus aureus. Chem Commun (Camb). 2019;55:2656–9.
Park H, Lee J, Jeong S, Im BN, Kim MK, Yang SG, et al. Lipase-sensitive transfersomes primarily based on photosensitizer/polymerizable lipid conjugate for selective antimicrobial photodynamic remedy of pimples. Adv Healthc Mater. 2016;5:3139–47.
Chang YN, Zhang M, Xia L, Zhang J, Xing G. The poisonous results and mechanisms of CuO and ZnO nanoparticles. Supplies. 2012;5:2850–71.
Wang YW, Cao A, Jiang Y, Zhang X, Liu JH, Liu Y, et al. Superior antibacterial exercise of zinc oxide/graphene oxide composites originating from excessive zinc focus localized round micro organism. ACS Appl Mater Interfaces. 2014;6:2791–8.
Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial exercise and mechanism of motion of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008;74:2171–8.
Jia H, Hou W, Wei L, Xu B, Liu X. The constructions and antibacterial properties of nano-SiO2 supported silver/zinc-silver supplies. Dent Mater. 2008;24:244–9.
Lemire JA, Harrison JJ, Turner RJ. Antimicrobial exercise of metals: mechanisms, molecular targets and purposes. Nat Rev Microbiol. 2013;11:371–84.
Su G, Zhang X, Giesy JP, Musarrat J, Saquib Q, Alkhedhairy AA, et al. Comparability on the molecular response profiles between nano zinc oxide (ZnO) particles and free zinc ion utilizing a genome-wide toxicogenomics strategy. Environ Sci Pollut Res Int. 2015;22:17434–42.
Chatterjee AK, Chakraborty R, Basu T. Mechanism of antibacterial exercise of copper nanoparticles. Nanotechnology. 2014;25: 135101.
Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X. The molecular mechanism of motion of bactericidal gold nanoparticles on Escherichia coli. Biomaterials. 2012;33:2327–33.
Niemirowicz Okay, Swiecicka I, Wilczewska AZ, Misztalewska I, Kalska-Szostko B, Bienias Okay, et al. Gold-functionalized magnetic nanoparticles limit progress of Pseudomonas aeruginosa. Int J Nanomed. 2014;9:2217–24.
Schairer DO, Chouake JS, Nosanchuk JD, Friedman AJ. The potential of nitric oxide releasing therapies as antimicrobial brokers. Virulence. 2012;3:271–9.
Friedman AJ, Blecher Okay, Schairer D, Tuckman-Vernon C, Nacharaju P, Sanchez D, et al. Improved antimicrobial efficacy with nitric oxide releasing nanoparticle generated S-nitrosoglutathione. Nitric Oxide. 2011;25:381–6.
Monteiro DR, Gorup LF, Takamiya AS, de Camargo ER, Filho AC, Barbosa DB. Silver distribution and launch from an antimicrobial denture base resin containing silver colloidal nanoparticles. J Prosthodont. 2012;21:7–15.
Lee SH, Jun BH. Silver nanoparticles: synthesis and utility for nanomedicine. Int J Mol Sci. 2019;20:865.
Wink DA, Kasprzak KS, Maragos CM, Elespuru RK, Misra M, et al. DNA deaminating capability and genotoxicity of nitric oxide and its progenitors. Science. 1991;254:1001–3.
Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ. Silver nanoparticles embedded in zeolite membranes: launch of silver ions and mechanism of antibacterial motion. Int J Nanomed. 2011;6:1833–52.
Ashmore D, Chaudhari A, Barlow B, Barlow B, Harper T, Vig Okay, et al. Analysis of E. coli inhibition by plain and polymer-coated silver nanoparticles. Rev Inst Med Trop Sao Paulo. 2018;60: e18.
Leung YH, Ng AM, Xu X, Shen Z, Gethings LA, Wong MT, et al. Mechanisms of antibacterial exercise of MgO: non-ROS mediated toxicity of MgO nanoparticles in direction of Escherichia coli. Small. 2014;10:1171–83.
Zhang Y, Lin S, Fu J, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Nanocarriers for combating biofilms: benefits and challenges. J Appl Microbiol. 2022. https://doi.org/10.1111/jam.15640.
Yeh YC, Huang TH, Yang SC, Chen CC, Fang JY. Nano-based drug supply or focusing on to eradicate micro organism for an infection mitigation: a assessment of latest advances. Entrance Chem. 2020;8:286.
Liao CC, Yu HP, Yang SC, Alalaiwe A, Dai YS, Liu FC, Fang JY. Multifunctional lipid-based nanocarriers with antibacterial and anti inflammatory actions for treating MRSA bacteremia in mice. J Nanobiotechnol. 2021;19(1):48.
Jina L, Liu X, Bian C, Sheng J, Tune Y, Zhu Y. Fabrication linalool-functionalized hole mesoporous silica spheres nanoparticles for effectively improve bactericidal exercise. Chin Chem Lett. 2020;31:2137–41.
Tian X, Wang P, Li T, Huang X, Guo W, Yang Y, Yan M, et al. Self-assembled pure phytochemicals for synergistically antibacterial utility from the enlightenment of conventional Chinese language medication mixture. Acta Pharm Sin B. 2020;10:1784–95.
Gounani Z, Asadollahi MA, Pedersen JN, Lyngsø J, Skov Pedersen J, et al. Mesoporous silica nanoparticles carrying a number of antibiotics present enhanced synergistic impact and improved biocompatibility. Colloids Surf B Biointerfaces. 2019;175:498–508.
Niño-Martínez N, Salas Orozco MF, Martínez-Castañón GA, Torres Méndez F, Ruiz F. Molecular mechanisms of bacterial resistance to steel and steel oxide nanoparticles. Int J Mol Sci. 2019;20(11):2808.
Panáček A, Kvítek L, Smékalová M, Večeřová R, Kolář M, Röderová M, et al. Bacterial resistance to silver nanoparticles and how one can overcome it. Nat Nanotechnol. 2018;13:65–71.
Salas-Orozco M, Niño-Martínez N, Martínez-Castañón GA, Méndez FT, Jasso MEC, Ruiz F. Mechanisms of resistance to silver nanoparticles in endodontic micro organism: a literature assessment. J Nanomater. 2019;2019:7630316.
Srivastava P, Kowshik M. Mechanisms of steel resistance and homeostasis in haloarchaea. Archaea. 2013;2013: 732864.
Zhang R, Carlsson F, Edman M, Hummelgård M, Jonsson BG, Bylund D, Olin H. Escherichia coli micro organism develop adaptive resistance to antibacterial ZnO nanoparticles. Adv Biosyst. 2018;2: e1800019.
Siemer S, Westmeier D, Barz M, Eckrich J, Wünsch D, Seckert C, et al. Biomolecule-corona formation confers resistance of micro organism to nanoparticle-induced killing: implications for the design of improved nanoantibiotics. Biomaterials. 2019;192:551–9.
Finley PJ, Norton R, Austin C, Mitchell A, Zank S, Durham P. Unprecedented silver resistance in clinically remoted enterobacteriaceae: main implications for burn and wound administration. Antimicrob Brokers Chemother. 2015;59:4734–41.
Faghihzadeh F, Anaya NM, Astudillo-Castro C, Oyanedel-Craver V. Kinetic, metabolic and macromolecular response of micro organism to continual nanoparticle publicity in steady tradition. Environ Sci Nano. 2018;5:1386–96.
Graves JL Jr, Tajkarimi M, Cunningham Q, Campbell A, Nonga H, Harrison SH, et al. Speedy evolution of silver nanoparticle resistance in Escherichia coli. Entrance Genet. 2015;6:42.
Hachicho N, Hoffmann P, Ahlert Okay, Heipieper HJ. Impact of silver nanoparticles and silver ions on progress and adaptive response mechanisms of Pseudomonas putida mt-2. FEMS Microbiol Lett. 2014;355:71–7.
Feris Okay, Otto C, Tinker J, Wingett D, Punnoose A, Thurber A, et al. Electrostatic interactions have an effect on nanoparticle-mediated toxicity to gram-negative bacterium Pseudomonas aeruginosa PAO1. Langmuir. 2010;26:4429–36.
Abbaszadegan A, Ghahramani Y, Gholami A, Hemmateenejad B, Dorostkar S, Nabavizadeh M, et al. The impact of cost on the floor of silver nanoparticles on antimicrobial exercise in opposition to gram-positive and gram-negative micro organism. J Nanomater. 2015;2015: 720654.
Peter KS, Rosalyn KL, George LM, Kenneth JK. Metallic oxide nanoparticles as bactericidal brokers. Langmuir. 2002;18:6679–86.
Kumariya R, Sood SK, Rajput YS, Saini N, Garsa AK. Elevated membrane floor constructive cost and altered membrane fluidity results in cationic antimicrobial peptide resistance in Enterococcus faecalis. Biochim Biophys Acta. 2015;1848:1367–75.
Jordan S, Hutchings MI, Mascher T. Cell envelope stress response in Gram-positive micro organism. FEMS Microbiol Rev. 2008;32:107–46.
Tzeng YL, Ambrose KD, Zughaier S, Zhou X, Miller YK, Shafer WM, et al. Cationic antimicrobial peptide resistance in Neisseria meningitidis. J Bacteriol. 2005;187:5387–96.
Sharma VK, Sayes CM, Guo B, Pillai S, Parsons JG, Wang C, et al. Interactions between silver nanoparticles and different steel nanoparticles below environmentally related situations: a assessment. Sci Whole Environ. 2019;653:1042–51.
Louie SM, Ma R, Lowry GV. Transformations of nanomaterials within the atmosphere. Entrance Nanosci. 2014;7:55–87.
Li Z, Greden Okay, Alvarez PJJ, Gregory KB, Lowry GV. Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zerovalent iron to E. coli. Environ Sci Technol. 2010;44:3462–7.
Guo J, Gao SH, Lu J, Bond PL, Verstraete W, Yuan Z. Copper oxide nanoparticles induce lysogenic bacteriophage and metal-resistance genes in Pseudomonas aeruginosa PAO1. ACS Appl Mater Interfaces. 2017;9:22298–307.
Kolaj-Robin O, Russell D, Hayes KA, Pembroke JT, Soulimane T. Cation diffusion facilitator household: construction and performance. FEBS Lett. 2015;589:1283–95.
Argüello JM, Padilla-Benavides T, Collins JM. Copper(I) ATPases: transport mechanism and mobile capabilities in micro organism. In: Encyclopedia of inorganic and bioinorganic chemistry. New York: Wiley; 2011. p. 1–8.
Imran M, Das KR, Naik MM. Co-selection of multi-antibiotic resistance in bacterial pathogens in steel and microplastic contaminated environments: an rising well being menace. Chemosphere. 2019;215:846–57.
Randall CP, Gupta A, Jackson N, Busse D, O’Neill AJ. Silver resistance in Gram-negative micro organism: a dissection of endogenous and exogenous mechanisms. J Antimicrob Chemother. 2015;70:1037–46.
Ellis DH, Maurer-Gardner EI, Sulentic CEW, Hussain SM. Silver nanoparticle antibacterial efficacy and resistance improvement in key bacterial species. Biomed Phys Eng Categorical. 2018;5: 015013.
Ramos-Zúñiga J, Gallardo S, Martínez-Bussenius C, Norambuena R, Navarro CA, Paradela A, Jerez CA. Response of the biomining Acidithiobacillus ferrooxidans to excessive cadmium concentrations. J Proteom. 2019;198:132–44.
Palomo-Siguero M, Gutiérrez AM, Pérez-Conde C, Madrid Y. Impact of selenite and selenium nanoparticles on lactic micro organism: a multi-analytical examine. Microchem J. 2016;126:488–95.
Chandrangsu P, Rensing C, Helmann JD. Metallic homeostasis and resistance in micro organism. Nat Rev Microbiol. 2017;15:338–50.
Wang X, Yang F, Zhao J, Xu Y, Mao D, Zhu X, et al. Bacterial publicity to ZnO nanoparticles facilitates horizontal switch of antibiotic resistance genes. NanoImpact. 2018;10:61–7.
Qiu Z, Shen Z, Qian D, Jin M, Yang D, Wang J, et al. Results of NaNO-TiO2 on antibiotic resistance switch mediated by RP4 plasmid. Nanotoxicology. 2015;9:895–904.
Flores-Kim J, Darwin AJ. Regulation of bacterial virulence gene expression by cell envelope stress responses. Virulence. 2015;5:835–51.
Tang S, Zheng J. Antibacterial exercise of silver nanoparticles: structural results. Adv Healthc Mater. 2018;7:1701503.
Čáp M, Váchová L, Palková Z. Reactive oxygen species within the signaling and adaptation of multicellular microbial communities. Oxid Med Cell Longev. 2012;2012: 976753.
Rochat T, Nicolas P, Delumeau O, Rabatinová A, Korelusová J, Leduc A, et al. Genome-wide identification of genes straight regulated by the pleiotropic transcription issue Spx in Bacillus subtilis. Nucl Acids Res. 2012;40:9571–83.
Tkachenko AG. Stress responses of bacterial cells as mechanism of improvement of antibiotic tolerance. Appl Biochem Microbiol. 2018;54:108–27.
Dale AL, Lowry GV, Casman EA. Modeling nanosilver transformations in freshwater sediments. Environ Sci Technol. 2013;47:12920–8.
Sheng Z, Van Nostrand JD, Zhou J, Liu Y. The results of silver nanoparticles on intact wastewater biofilms. Entrance Microbiol. 2015;6:680.
Peulen TO, Wilkinson KJ. Diffusion of nanoparticles in a biofilm. Environ Sci Technol. 2011;45:3367–73.
Choi O, Yu CP, Esteban Fernández G, Hu Z. Interactions of nanosilver with Escherichia coli cells in planktonic and biofilm cultures. Water Res. 2010;44:6095–103.
Sahle-Demessie E, Tadesse H. Kinetics and equilibrium adsorption of nano-TiO2 particles on artificial biofilm. Surf Sci. 2011;605:1177–84.
Lin Z, Monteiro-Riviere NA, Riviere JE. Pharmacokinetics of metallic nanoparticles, WIREs. Nanomed Nanobiotechnol. 2015;7:189–217.
Zaidi S, Misba L, Khan AU. Nano-therapeutics: a revolution in an infection management in submit antibiotic period. Nanomed Nanotechnol Biol Med. 2017;13:2281–301.
Longmire M, Choyke PL, Kobayashi H. Clearance properties of nano-sized particles and molecules as imaging brokers: concerns and caveats. Nanomedicine. 2008;3:703–17.
Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, et al. Renal clearance of quantum dots. Nat Biotechnol. 2007;25:1165–70.
Deen WM, Lazzara MJ, Myers BD. Structural determinants of glomerular permeability. Am J Physiol Renal Physiol. 2001;281:579–96.
Kandi V, Kandi S. Antimicrobial properties of nanomolecules: potential candidates as antibiotics within the period of multi-drug resistance. Epidemiol Well being. 2015;37: e2015020.
Ivask A, Juganson Okay, Bondarenko O, Mortimer M, Aruoja V, Kasemets Okay, et al. Mechanisms of poisonous motion of Ag, ZnO and CuO nanoparticles to chose ecotoxicological take a look at organisms and mammalian cells in vitro: a comparative assessment. Nanotoxicology. 2014;8:57–71.
Ansari MA, Khan HM, Khan AA, Ahmad MK, Mahdi AA, Pal R, et al. Interplay of silver nanoparticles with Escherichia coli and their cell envelope biomolecules. J Fundamental Microbiol. 2014;54:905–15.
Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, et al. Built-in metabolomic evaluation of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a fast in vivo screening technique for nanotoxicity. Toxicol Appl Pharmacol. 2008;232:292–301.
Poolman JT. Increasing the position of bacterial vaccines into life-course vaccination methods and prevention of antimicrobial-resistant infections. NPJ Vaccines. 2020;5:84.
Bekeredjian-Ding I. Challenges for scientific improvement of vaccines for prevention of hospital-acquired bacterial infections. Entrance Immunol. 2020;11:1755.
Osterloh A. Vaccination in opposition to bacterial infections: challenges, progress, and new approaches with a concentrate on intracellular micro organism. Vaccines (Basel). 2022;10(5):751.
Marques Neto LM, Kipnis A, Junqueira-Kipnis AP. Function of metallic nanoparticles in vaccinology: implications for infectious illness vaccine improvement. Entrance Immunol. 2017;8:239.
Curley SM, Putnam D. Organic nanoparticles in vaccine improvement. Entrance Bioeng Biotechnol. 2022;10: 867119.
Fries CN, Curvino EJ, Chen JL, Permar SR, Fouda GG, Collier JH. Advances in nanomaterial vaccine methods to handle infectious illnesses impacting world well being. Nat Nanotechnol. 2021;16(4):1–14.
Fröhlich E. The position of floor cost in mobile uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577–91.
Singh B, Maharjan S, Cho KH, Cui L, Park IK, Choi YJ, Cho CS. Chitosan-based particulate methods for the supply of mucosal vaccines in opposition to infectious illnesses. Int J Biol Macromol. 2018;110:54–64.
Bivas-Benita M, van Meijgaarden KE, Franken KL, Junginger HE, Borchard G, Ottenhoff TH, et al. Pulmonary supply of chitosan-DNA nanoparticles enhances the immunogenicity of a DNA vaccine encoding HLA-A*0201-restricted T-cell epitopes of Mycobacterium tuberculosis. Vaccine. 2004;22(13–14):1609–15.
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, et al. Rising vaccine nanotechnology: from protection in opposition to an infection to sniping most cancers. Acta Pharm Sin B. 2022;12:2206–23.
Hanson MC, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Make investments. 2015;125:2532–46.
Ilyinskii PO, Roy CJ, O’Neil CP, Browning EA, Pittet LA, Altreuter DH, et al. Adjuvant-carrying artificial vaccine particles increase the immune response to encapsulated antigen and exhibit sturdy native immune activation with out inducing systemic cytokine launch. Vaccine. 2014;32:2882–95.
Pati R, Shevtsov M, Sonawane A. Nanoparticle vaccines in opposition to infectious illnesses. Entrance Immunol. 2018;9:2224.
Gregory AE, Williamson ED, Prior JL, Butcher WA, Thompson IJ, Shaw AM, et al. Conjugation of Y. pestis F1-antigen to gold nanoparticles improves immunogenicity. Vaccine. 2012;30:6777–82.
van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, et al. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine. 2014;32:7098–107.
Ruwona TB, Xu H, Li J, Diaz-Arévalo D, Kumar A, Zeng M, et al. Induction of protecting neutralizing antibody responses in opposition to botulinum neurotoxin serotype C utilizing plasmid carried by PLGA nanoparticles. Hum Vaccines Immunother. 2016;12:1188–92.
Safari D, Marradi M, Chiodo F, Th Dekker HA, Shan Y, Adamo R, et al. Gold nanoparticles as carriers for an artificial Streptococcus pneumoniae kind 14 conjugate vaccine. Nanomedicine. 2012;7:651–62.
Muruato LA, Tapia D, Hatcher CL, Kalita M, Brett PJ, Gregory AE, et al. Use of reverse vaccinology within the design and building of nanoglycoconjugate vaccines in opposition to Burkholderia pseudomallei. Clin Vaccines Immunol. 2017;24:e00206-e217.
Dakterzada F, Mobarez AM, Roudkenar MH, Mohsenifar A. Induction of humoral immune response in opposition to Pseudomonas aeruginosa flagellin(1–161) utilizing gold nanoparticles as an adjuvant. Vaccine. 2016;34:1472–9.
Das S, Angsantikul P, Le C, Bao D, Miyamoto Y, Gao W, et al. Neutralization of cholera toxin with nanoparticle decoys for remedy of cholera. PLoS Negl Trop Dis. 2018;12: e0006266.
Danzig L. Meningococcal vaccines. Pediatr Infect Dis J. 2004;23:S285–92.
Wang N, Qian R, Liu T, Wu T, Wang T. Nanoparticulate carriers used as vaccine adjuvant supply methods. Crit Rev Ther Drug Carr Syst. 2019;36:449–84.
Yu F, Wang J, Dou J, Yang H, He X, Xu W, et al. Nanoparticle-based adjuvant for enhanced protecting efficacy of DNA vaccine Ag85A-ESAT-6-IL-21 in opposition to Mycobacterium tuberculosis an infection. Nanomedicine. 2012;8:1337–44.
Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, et al. Part 2b managed trial of M72/AS01E vaccine to forestall tuberculosis. N Engl J Med. 2018;379:1621–34.
Berzosa M, Pastor Y, Gamazo C, Irache JM. Growth of a bacterial nanoparticle vaccine in opposition to Escherichia coli. Strategies Mol Biol. 2022;2410:357–65.
Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and vaccine improvement. Pharm Nanotechnol. 2020;8:6–21.
Irvine DJ, Hanson MC, Rakhra Okay, Tokatlian T. Artificial nanoparticles for vaccines and immunotherapy. Chem Rev. 2015;115:11109–46.
Sridhar S, Brokstad KA, Cox RJ. Influenza vaccination methods: evaluating inactivated and reside attenuated influenza vaccines. Vaccines. 2015;3:373–89.
Rosini R, Nicchi S, Pizza M, Rappuoli R. Vaccines in opposition to antimicrobial resistance. Entrance Immunol. 2020;11:1048.
Micoli F, Bagnoli F, Rappuoli R, Serruto D. The position of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 2021;19:287–302.
Matić Z, Šantak M. Present view on novel vaccine applied sciences to fight human infectious illnesses. Appl Microbiol Biotechnol. 2022;106:25–56.
Hirosue S, Kourtis IC, van der Vlies AJ, Hubbell JA, Swartz MA. Antigen supply to dendritic cells by poly(propylene sulfide) nanoparticles with disulfide conjugated peptides: cross-presentation and T cell activation. Vaccine. 2010;28:7897–906.
Kaminskas LM, Porter CJH. Concentrating on the lymphatics utilizing dendritic polymers (dendrimers). Adv Drug Deliv Rev. 2011;63:890–900.
Leleux J, Atalis A, Roy Okay. Engineering immunity: modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy. J Management Launch. 2015;219:610–21.
Singh B, Maharjan S, Cho KH, Cui LH, Park IK, Choi YJ, et al. Chitosan-based particulate methods for the supply of mucosal vaccines in opposition to infectious illnesses. Int J Biol Macromol. 2018;110:54–64.
Baker SJ, Payne DJ, Rappuoli R, De Gregorio E. Applied sciences to handle antimicrobial resistance. Proc Natl Acad Sci USA. 2018;115:12887–95.
Rappuoli R, Bloom DE, Black S. Deploy vaccines to struggle superbugs. Nature. 2017;552:165–7.
Bilukha OO, Rosenstein N. Prevention and management of meningococcal illness. Suggestions of the Advisory Committee on Immunization Practices (ACIP). Morb Mort Wkly Rep Recomm Rep. 2005;54:1–21.
Delany I, Rappuoli R, Gregorio ED. Vaccines for the twenty first century. EMBO Mol Med. 2014;6:708–20.
Khan O, Chaudary N. Using amikacin liposome inhalation suspension (Arikayce) within the remedy of refractory nontuberculous mycobacterial lung illness in adults. Drug Des Devel Ther. 2020;14:2287–94.
Cipolla D, Blanchard J, Gonda I. Growth of liposomal ciprofloxacin to deal with lung infections. Pharmaceutics. 2016;8(1):6.
Bricks LF, Berezin E. Impression of pneumococcal conjugate vaccine on the prevention of invasive pneumococcal illnesses. J Pediatr (Rio J). 2006;82:S67–74.
Narang A, Chang RK, Hussain MA. Pharmaceutical improvement and regulatory concerns for nanoparticles and nanoparticulate drug supply methods. J Pharm Sci. 2013;102:3867–82.
Hua S, De Matos MBC, Metselaar JM, Storm G. Present tendencies and challenges within the scientific translation of nanoparticulate nanomedicines: Pathways for translational improvement and commercialization. Entrance Pharmacol. 2018;9:790.
Tinkle S, McNeil SE, Mühlebach S, Bawa R, Borchard G, Barenholz Y, Tamarkin L, Desai N. Nanomedicines: addressing the scientific and regulatory hole. Ann N Y Acad Sci. 2014;1313:35–56.
Kumar Teli M, Mutalik S, Rajanikant GK. Nanotechnology and nanomedicine: going small means aiming huge. Curr Pharm Des. 2010;16:1882–92.
Murday JS, Siegel RW, Stein J, Wright JF. Translational nanomedicine: standing evaluation and alternatives. Nanomed Nanotechnol Biol Med. 2009;5:251–73.